(10x^2)=(19-10x)

Simple and best practice solution for (10x^2)=(19-10x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (10x^2)=(19-10x) equation:



(10x^2)=(19-10x)
We move all terms to the left:
(10x^2)-((19-10x))=0
We add all the numbers together, and all the variables
10x^2-((-10x+19))=0
We calculate terms in parentheses: -((-10x+19)), so:
(-10x+19)
We get rid of parentheses
-10x+19
Back to the equation:
-(-10x+19)
We get rid of parentheses
10x^2+10x-19=0
a = 10; b = 10; c = -19;
Δ = b2-4ac
Δ = 102-4·10·(-19)
Δ = 860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{860}=\sqrt{4*215}=\sqrt{4}*\sqrt{215}=2\sqrt{215}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{215}}{2*10}=\frac{-10-2\sqrt{215}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{215}}{2*10}=\frac{-10+2\sqrt{215}}{20} $

See similar equations:

| 180-125+4x=0 | | 31-p=419 | | 10(j+7)=90 | | -3(x=5)=8x+18 | | -6x+8=−6x+8=-10x-20 | | 13=90x-4 | | 7(n-94)=7 | | 3/8x+7/8x+2=-2 | | 7y−15=−29. | | 76=12+4y | | 10x^2=19-10x | | -3(x-5)=-2(x-8) | | -1/2x+8=-3/4X+9 | | 7r^2-1=-4r | | -5(3x-19)=2(x-2)-3 | | x+14+x+9+5x-10=180 | | 13(z+4)-6=23(5-z) | | -2h-8=-4h+16 | | 180-120+2x=180 | | 3(c−13)=−36 | | F=9x6 | | 3(q-88)=-12 | | 8x+14=4x-6 | | 4m-16=8 | | 180-120+2x=0 | | -4=f-9 | | 180-120+3x=0 | | 2x-(9-6x)=6x | | 5+3c=41 | | 6^-7t=0.60 | | 9k+5=3k+35 | | 3/c=c/27 |

Equations solver categories